Q.P	Q.P. Code: 19ME0319											R19				
Re	g.	No:			C 100 C	in .]			
		SIDDH	IART	H INS	TITU	TE O	F EN (AU	GINE	ERIN DMOU	(G & ' JS)	TECH	INOL	OGY:: I	PUTT	UR	
		B. 7	ech I	II Ye	ear II	Sem	ester	·Reg	ular	Exan	ninat	ions	August-	-2022		
						HE	AT &	MAS	S TRA	NSF	ER		C			
						()	Mecha	nical I	Engine	ering)					
Tim	e:	3 hours												Max.	Mark	ks: 60
					(Ans	swer a	ll Five	e Units	5 x 1	2 = 6	0 Mar	·ks)				
								UNI	T-I			ŕ				
1 :	1	List the basic laws which govern the heat transfer.											L1	6M		
I)	Name a	nd exp	olain th	ne mec	hanis	m of h	eat tra	nsfer.						L2	6M
•		XX71	1		1	C	0 Г	0	R						T 1	
2 2	1	A plane	condu wall	is 150	meat tr	thick	and its	iain ita wall	s parai	s 4 5	5. m? I	f its c	onductivi	ity is		6M
K	,	9.35 W	m 0C	and su	urface	tempe	erature	are st	eady a	at 150	0C ar	nd 45	0C, deter	mine	1.4	UIVI
		i).Heat	transf	er acı	oss th	ne pla	nne w	all, ii).Tem	peratu	re gr	adient	in the	flow		
		directio	n													
		G1 . 1			0.0	.		UNI	<u>Г-II</u>	0.0						
3 8	l	Sketch	various	s type:	s of fir	ns. Gi	ve exa	imples	of us	e of fi	ns in	varioi	is enginee	ering	L3	6M
ł)	Calcula	te the	amour	nt of e	nergy	reaui	red to	solde	r toge	ther ty	vo vei	v long pi	ieces	L4	6M
		of bare	coppei	r wire	1.5 m	m dia	meter	with s	older	that m	elts a	t 190	0C. The v	wires		
		are posi	tioned	vertic	ally in	n air a	t 20 0	C. Ass	sume t	hat th	e heat	trans	fer coeffi	cient		
		on the V	vire su	irface	1s 20 V	N/m2	0C an	id ther	mal c	onduc	tivity	of wii	re alloy is	\$ 330		
		w/mioc						O	R							
4 e	L	A 50 cr	n x 50) cm c	opper	slab (5.25 m	nm thi	ck has	s a un	iform	temp	erature of	f 300	L4	6M
		⁰ C. Its t	emper	ature i	is sudd	lenly	lowere	ed to 3	6 [°] C.	Calcu	late tl	ne tim	e require	d for		
		the plat ${}^{0}C$ $k =$	e to re	each th	ie tem	peratu	re of	108.]	Take p	0 = 90	00 kg	/m ³ , c	k = 0.38 k	ζJ/kg		
ŀ		C, K = What is	10 w	ed syst	em an	– 90 alvsis	w/m ? Deri	C. ve the	expre	ssion	for it.				L2	6M
~			- market	<i></i>		urj 515	. 2011	UNIT	-III	bbron						UT I
5 A	A c	ylinder	body of	of 300) mm (diame	ter an	d 1.6	m hei	ght is	main	tained	at a con	stant	L4	12M
t	em	perature	e of 36	.5 °C.	The su	irrour	iding t	emper	ature	is 13.	$5^{0}C.$	Find o	ut the am	iount		
C	ot h	heat to be -0.06	e gene	rated $\int_{-\infty}^{0} C$	by the	body	per ho	our if p	p = 1.0	25 kg	$/m^{2},v$	= 15.0	$16 \times 10^{\circ}$	m²/s,		
N	р Јп=	- 0.90 =0.12(G	$r Pr)^{1/3}$	gcz	ina k	- 0	.0892	KJ/11.	in C	and	р-1/	290	\mathbf{N} -1. As:	sume		
-		0.12(0		•				0	R							
6 (Cal	culate th	e heat	transf	fer from	n a 60) W in	cande	escent	bulb a	at 115	⁰ C to	ambient	air at	L4	12M
2	5 '	C. Assu	iming	the bu	ilb as a	a sphe	ere of	50 mr	n dian	neter.	Also,	find t	he percer	ntage		
C ,	Tal Tal	bower Ic	0st by 064 v1	free c 0^{-2} W	onvect $m^{0}C$	n = 2	1 he cc	10_{-6} n	$\frac{100}{10}$ 1S	given $r = 0$	by: Г 504	u = 0	J.60 (Gr.)	Pr)		
•	I a	KC K 2.	70 7 A1	0 1	/m c,	0 2	0.02A		-IV	1 0.0))7.					
7 a	ı	Explain	the co	ncept	of bla	ck boo	lv.	CITI							L1	6M
k)	Explain	the su	rface	emissi	ve pro	pertie	s.							L1	6M
					The second			0	R						- -	201, 12 - 10
8 a	l	Disting	ish be	tween	Boilin	ng and	l Conc	lensat	ion.	19					L1	6M
t		w nat is	olack	body?	HOW	is diff	er Iroi	m a gr	ay bo	uy?					LI	OIVI

Q.P. Code: 19ME0319

UNIT-V

 $\mathbf{R1}$

9 In a certain double pipe heat exchanger hot water flow at a rate of 5000 kg/h and gas L4 12M cooled from 95 0 C to 65 0 C. At the same time 50000 kg/h of cooling water at 30 0 C enters the heat exchanger. The flow conditions are that L4overall heat transfer coefficient remains constant at 2270 W/m² K. Determine the heat transfer area required and the effectiveness, assuming two streams are in parallel flow. Assume for the both the streams cp = 4.2 kJ/kg K.

OR

10 The flow rate of hot and cold water streams running through a parallel flow heat L4 12M exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures on the hot and cold sides are 75 °C and 20 °C respectively. The exit temperature of hot water is 45°C. If the individual heat transfer coefficients on the both sides are 650 W/m² °C, calculate the area of heat exchanger

*** END ***